
WRDC-TR-90-5006

CUP

N

PROVING BOOLEAN EQUIVALENCE WITH PROLOG

MICHAEL ALAN DUKES, M.S.E.E.
CAPTAIN, U.S. ARMY
AIR FORCE INSTITUTE OF TECHNOLOGY

FRANK MARKHAM BROWN, PhD
PROFESSOR OF ELECTRICAL ENGINEERING
AIR FORCE INSTITUTE OF TECHNOLOGY

February 1990

FINAL REPORT FOR PERIOD JAN 89 TO FEB 90

Approved for public release; distribution unlimited. DTIC-'ELECTE I

IaF B Dk

ELECTRONIC TECHNOLOGY LABORATORY
WRIGHT RESEARCH AND DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying any
rights or permission to manufacture, use, or sell any patent invention that
may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including
foreign nations.

This technical report has been reviewed and is approved for publica-
tion.

HAEL A. DUKES, Capt, USA IOHN W. HINES, Chief
Air Force Institute of Technology Design Branch

Microelectronics Division

FOR THE COMMANDER

STANLEY E. AGNER, ief
Microelect 'nic ision
Electronic TechnolJy Laboratory

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify WRDC/ELED, WPAFB, OH 45433-6543 to help us maintain a current mailing
list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE
Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;

2b DECLASSIFICATION /DOWNGRADING SCHEDULE distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

WRDC-TR-90-5006

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

* AFIT/ENG (if applicable) WRDC/ELED

6c ADDRESS (City, State, and ZIP Code) 7b ADDRESS(City, State, and ZIP Code)

WRIGHT-PATTERSON AFB OH 45433-6543 WRIGHT-PATTERSON AFB OH 45433-6543

8a NAM,- OF FUNDING /SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

I IN-HOUSE

Bc ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO. NO ACCESSION NO.

62204F 6096 I 40 I 18

11 TITLE (Include Security Classification)

PROVING BOOLEAN EQUIVALENCE WITH PROLOG

12 PERSONAL AUTHOR(S)

DUKES, MICHAEL ALAN BROWN, FRANK MARKHAM
13a. TYPE OF REPORT 13b. TIME COVERED -14. DATE OF REPORT (Year, Month,Day) 15 PAGE COUNT

Final -1FROM 01 / 89 _TO 02/901 Feb 90 22

16 SUPPLEMENTAIRY NOTATION

The computer software contained herein are "harmless." Already in the public domain.

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP BOOLEAN METHODS - EQUIVALENCE - LOGIC PROGRAMMING

12 05

12 05 1
19 ABSTRACT (Continue on reverse if necessary and identify by block number)

This report explains a Prolog program that performs Boole's Expansion Theorem. The

Prolog progrdm proves equivalence of Boolean formulas using the f = g form. The pattern
matching feature of Prolog increases the efficiency of the proof process in soe cases by

4 avoiding expansion on every term of f and g. A proof of the Prolog program's correctness
is also offered. The operators used within the confines of the algorithm are complement,

conjunction, disjunction, and exclusive or. Some examples are presented to demonstrate
* the efficiency of the Prolog prcgram.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

0 UNCLASSIFIED/UNLIMITED 0 SAME AS RPT El DTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDI/IDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
CAPTAIN MICHAEL A. DUKES (511, 255-R626 WRDC/ELED

DD Form 1471, JIUN to Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Table of Contents

Page

I Intro(hct ,iotM I I

II. Background: Boole's Expansion Theorem 2

III. Analysis of the Problem 3

IV. Prolog Implementation 5

V. Examples 10

VI. Conclusions 17

VII. References 18

Accession For

NTIS GRA&I
DTIC Tk 3 l-Unaroln- ced'o
Justitioation

* By-
I St ribut ion/AvailablIlty Codes

-vail and/or
Dist Spoclal

frii

i !

1. Introduction

The purpose of this report is to demonstrate a small Prolog program that verifies the relation
f = y where f and g are two Boolean formulas. Portions of the proof process are accomplished
tising the lp)LterI matching feature of Prolog. The Prolog program was developed to augment
the theorem proving process of the Higher Order Logic (HOL) system as described in [1] and [2].
The Prolog program implements Boole's Expansion Theorem within the confines of Prolog's depth-
first search. A type of Greedy algorithm is also presented through the generous use of cuts. The
operators used within the confines of the algorithm are complement, conjunction, di3junction, and
exclusive or. Finally, the Prolog routine is presented with some examples.

The organization of the presentation includes a short explanation of the theory, examination
of the structure of the problem, discussion of the solution in Prolog, presentation of some examples,
and some conclusions. Boolean formulas of n variables are represented by f(X), g(X), or h(X)
where X is an n-variable vector. The operators used are + for disjunction, * for conjunction, '
for complement, and D for exclusive or. The * may be dropped when doing so does not lead to
ambiguities. Furthermore. f, g, or h may be used in place of f(X), g(X), or h(X), respectively.
The elements of X may be enumerated as X 1 , X2 , ... , X, to show the first element, second element,
and up to the nth element.

• II m | ' '1

II. Background: Boole's Expansion Theorem

Boole's Expansion Theorem, which was specialized to switching functions in (3], states for a
fiiictuio, of one variable that []

f(x) = f(1)x + f(O)(1-x).

For a function of two variables [4]

f(x,y) = f(Ii)xy + f(1,0)x(1-y) + f(O,1)(1-x)y + f(0,0)(I-X)(1-y).

The form "(1 - x)" was used by Boole to express "the complement of x" and the "+" operator was
used as modulo-two sum. Shannon provides an expansion about one variable whose values may
only be in {0,1} [3]:

f(X1,X2,. .. ,Xn) = Xlf(1,X2,. ..,Xn) + 1i'f(0,12.... n).

For two variables the Shannon expansion is

f(Xl,X2,...,Xn) = X1X2f(1,1,X3,...,Xn) + XX2'f(1,O,X3,....Xn)
+ XI'X2f(0,1,X3,...,Xn) + X1'X2'f(O,O,X3,.... ,Xn).

The expansion is further generalized to functions of n variables by both Boole [4] and Shannon
[3]. A proof that Boole's Expansion Theorem holds for every n-variable Boolean function is provided
in [5]. Even though Shannon is often credited with the development of this expansion, it was
originally developed by Boole. This expansion process will therefore be referred to in this paper as
Boole's Expansion Theorem.

2

IH. Analysis of the Problem

The problem, given two n-variable Boolean formulas, f and g, is to show that they are
equivalent using Boole's Expansion Theorem. We may assume that the formulas will be presented
separately. Since the problem is to show that f = g, the two formulas may be further expanded as
follows.

Theorem 1 f = g iff

f(1, A2,...,Xn)= g(1, X2,...,Xn) (1)

f(O, X2,..., Xn) =g(0, X2, ... , Xn). (2)

Proof 1 Without loss of generality, we will consider the case Vx EB f(x) = g(x) where B is the
carrier for a Boolean algebra. By Boole's Expansion Theorem, it is true that

f(x) = Xf(1) + X' f(O)

and
g(x) = xg(1) + x'g(O).

We may then perform the appropriate substitution for f(x) = g(x).

(f(z) = g(x)) , ((xf(1) + X'f(0)) = (xg(1) + x'g(O)))

From [6] we have (u = v) € (u D v = 0). Thus

(f(x) = g(x)) , (xf(1) + x'f(0)) e (xg(1) + x'g(0)) = 0
i z'g(O)f'(O) + Xg(1)f'(1) + x'f(0)g'(0) + xf(1)g'(1) = 0

€ x(g(1)f'(1) + f(1)g'(1)) + X'(g(0)f'(O) + f(0)g'(0)) = 0

X x(g(1)f'(X) + f(1)g'(1)) = 0 and x'(g(O)f'(0) + f(0)g'(0)) = 0

Then VX EB we have the system

x(g(1)f'(1)+f(1)g'(1)) = 0,
x'(g(0)f'(O) + f(0)g'(0)) = 0.

The above system is true iff f(1)=g(1) and f(O)=g(O). 0

The process of Theorem 1 is performed recursively over all variables of the formulas f and
g. From the original set of formulas, f = g, expansion on the first variable leads to two bcparate
equations. Expansion on the next variable leads to four separate equations. The process continues
until 2' separate equations exist. Boolean formulas that represent the same Boolean function may
contain literals such that once a given number of variables have been expanded on, the result might
be two Boolean formulas that match in their pattern of literals. Consider the following example
for f and g.

f(X,y,z) = X(y+z)+y'z.

g(X,y,z) = xy+y'z.

By Theorem 1, f = g holds iff f(0,y,z) = g(O,y,z) and f(1,y,z) = g(1,y,z), i.e., f = g iff the
result

y'z = yI z

3

alnd

y+ z + y'z = y+ y'z

is verified.

At. this point, it is no longer necessary to expand on the formulas produced from X = 0, since
y'z = y'z simply by pattern matching. Thus, for some j < n, portions of the expansion process
may be performed in O(j) time simply by pattern recognition. The pattern matching feature of
Prolog can then supply increased efficiency simply by checking for one Boolean formula to match
a second Boolean formula before expanding on its variables.

4

IV. Prolog Implementation

Based on the considerations in the previous section, a Prolog implementation was generated.
In this section, the Prolog code to implement the proof of f = g wil! 'e presented. The Prolog
code is contained in two files. The first file, called ops, is used to define the operators. The second
file, called verify, performs the expansion and verification of the Boolean formulas.

The following is a listing of the file ops. The four operators previously defined for logical
disjunction, conjunction, complement, and exclusive or had to be redefined to accommodate Prolog
below. The op(51O,yfx,$) defines the $ as (D. The op(500,yfx,Q) defines the @ as +. The
op(400,yfx,-) defines the - as *. The op(300,fx, -) defines the - as

op(1Oyfx,$).
op(500,yfx,C).
op(400,yfx,-).
op(300,fx, -).

The eval clauses provide the proper evaluation for the operators. The format of the eval
clause is

eval(XopY, Z)

or
eval(Y, Z)

where X and Y are complemeai,,d or uncomplemented terms and Z is the derived term.

eval(_)
eval(I - X,X):-!.

eval(i $ X, X):-!.
eval(O C XX):-!.
eval(O - _,0):-!.
eval(O $ XX):-!.
eval(_ C 1,1):-!.
eval(X - X):-!.
eval(X $ I,- X):-!.
eval(X C 0,X):-!.
eva1(_ - 0,0):-!.
eval(X $ 0,X):-!.
eval(" 0,1):-!.
eval(" 1,0):-!.
eval(" X C X,1):-!.
eval(X C - X,1):-!.
eval(" X - X,O):-!.
eval(X" - X,O):-!.
eval(X $ XO):-!.
eval(X $ X,I):-!.
eval(X $ - X,1):-!.
eval(X C XX):-!.
eval(X^ X,X):-!.
eval(X,X) :-!.

For the remainder of this section, the clauses of the verify program will be discussed in the
order they are called.

5

The first clause called in verify is go. The success of this clause is based upon the existence
of two Boolean formulas expressed within a fact of arity two called eqtn. Further, the eq clause
must be satisfied with regard to the two Boolean formulas from the eqtn fact. Prior to execution
of the eq clause, the evaluate clause is called to reduce expressions that meet the criteria of the
eval clauses. A Boolean formula, '(u, v, w, z, y, z), where u and v have been set to some value in
{ 01}, could then be reduced to a formula of f(w, x, y, z) before executing the eq clause.

go:-
eqtn(XY),
evaluate(X,XNew),

evaluate(Y,YNew),

eq(XNewYNew).

The evaluate clause is also called from a later clause called divide. The evaluate clause
calls upon the eval clauses loaded from the ops file containing the operator definitions. At this
point, the Boolean formula is reduced based upon eliminations of terms under the eval rules.

evaluate(X,X) :-atomic(X),!.

evaluate(FFReduced) :-
evaluate (F,FTemp),

eval(FTemp,FReduced),!.
evaluate(LOR,Resolved)
evaluate (L,LNew),
evaluate(R,RNew),
eval(LNewORNew,Resolved).

evaluate(L-RResolved)
evaluate (L, LNew),

evaluate (R,RNew),
eval(LNew-RNew,Resolved).

evaluate(L $ R,Resolved)

evaluate(L,LNew),

evaluate(R,RNew),

eval(LNew $ RNew,Resolved).

The eq clause calls other clauses in order to perform poole's Expansion Theorem. The clause
first checks to see if there exists a straight pattern match between both formulas. If so, then success
is achieved upon this branch of the depth-first search tree. However, should immediate success not
be achieved, a variable is first extracted from the f Boolean formula through the extract clause.
The next step is to generate the f(0), f(1), g(0), and g(i) Boolean formulas from the f and g
Boolean formulas using the variable chosen from the extract clause. Then the eq clause is called
recursively to see if f(0) = 9(0) and f(1) = g(1).

eq(X.X):-!.
eq(F,G) "-
extract(X,F),

divide(F,X,FO,Fl),
divide(G,X,GO,G1),!,
eq(FO,GO), !,

eq(F1,G1),!.

6

The extract clause finds the first available variable in the operator tree for f. The first
extract clause checks to see if a leaf node has been reached. Should it be the case that a leaf
node is reached, then the leaf node is checked to be either a 1 or 0. Otherwise, the leaf node
is a variable. The other extract clauses allow for search down the tree on the four operators
coipleiieit, (isjunctionI, couijtict.io , or 'x('hi ivv or.

extract(X,X)
atom(X),!.

extract(X,Y)

extract (X,Y).

extract(X,LO_)
extract(X,L).

extract(X,.@R)
extract(X,R).

extract(X,LK_)
extract(X,L).

extract(X,_'R)
extract(X,R).

extract(X,L $ -)
extract(XL).

extract(X,_ $ R)
extract(X,R).

The next clause called upon by the eq clause is divide. The divide clause performs two
functions. First, the f(0) and f(1) Boolean formulas are generated strictly by replacing each
occurrence of the variable of interest with the appropriate 0 or 1 value in the operator tree for f.
The second part of the divide clause involves evaluation of the f(0) and f(1) Boolean formulas to
eliminate the occurrence of 0 and 1 where possible, and occurrences of terms that are eliminated
due to the assignment of 0 or 1.

divide(F,X,FO,Fl) :-
remove-xO(F,X,FOTemp),

remove-x_ 1(F,X,FITemp),
evaluate (FOTempFO),
evaluate(F1Temp,F1).

The next clause considered is the remove_x_0 clause called by the divide clause. The purpose
of this clause is to search the operator tree of a Boolean formula and replace every occurrence of
the given variable with a 0. The remove-x_0 clause returns the new operator tree when all leaves
have been visited.

remove_x_O(Y,X,Y)
atom(Y),

7

Y \== X,!

remove-x-o0CY,X,-Y)

atom(Y),
Y \== X,!.

remove.x_.O(XX,O):-
remove-x_O(1X,X,1):-

remove-x-0C Y,X,-NevY)

remove~x0O(Y,X,NewY).

remove-x.0(L 0 RX,LNew 0 RNew)

remove-xO(L,XLNew),

remove-xO(,X,RNew).
remove_x_O(L -RXLNew -RNew)

remove..x-.O(L,X,LNew),
remove-x-.O(R,X,RNew).

removex-O(L $ R,X,LJev $ RNew)

remove.x-.O(L,X,LNev),
remove-.x-0(R,X,RNew).

The remove-x_ 1 clause is included below for completeness. Everything mentioned for the
remove-x_0 clause is also valid here.

remove-x_ 1(Y,X,Y)
atom(Y),
Y \== X,..

re:'ve-x_ ICY,X.-Y)

atom(Y),
Y \== X!.

remove-x_1(XX,1):-

remove-x_ iC ,X.O):-

remove-x_ 1(-Y,X,-NewY)

reinove-x..AYX,NewY).
remove.x...(L 0 R,X,LNew C RNew)

remove-x-j(L,X,LNev),
remove.-x-1(R,X,RNew).

remove-x_ 1(L - R,X,LNew -RNew)

rem ~ve-_lCL,X,LNev),
remove-x-CR,X,RNev).

remove-x_ 1(L $ R,X,LNew $ Itlew)

remove-x-1CL,X,Llew),
remove-.xj(R,X,Rffew).

The evaluate clause is explained after the discussion of the go clause.

8

All of the clauses described above may be placed in one file to be loaded at once; however,
there is a specific order of declaration that must be followed. The four operation declarations using
the op directive must be read first by Prolog. Afterwards, the remaining clauses may appear in any
order. If Quintus Prolog is being used, the clauses with the same clause head should be grouped
together.

Caution in writing the code was used to ensure conformance to Clocksin and Mellish standard
Prolog [7]. To date, the system runs under Quintus Prolog, CProlog, and Prolog86. The code has
been run on an IBM PC-AT, SUN 4, VAX 11/785, MicroVAX 3600, and VAX 8800. For reading in
Boolean formulas greater than one or two pages in length, Quintus Prolog appears to be the only
implementation of the three that succeeds.

9

V. Examples

This Boolean formula verification system has largely been used to verify hardware specifi-
cations and implementations. Some cf the more interesting examples of the use of this routine
have been in comparing large Boolean formulas that make extensive use of the exclusive or op-
erator. Most of the examples presented below compare Boolean formulas containing exclusive or
operations.

An example run in Quintus Prolog is provided. In this case, we wish to prove De Morgan's
Law between f and g. The formulas are declared in a clause called eqtn within a file called equation.

eqtn(('(x - y)),(- x a - y)).

The following is a log of the session verifying the equivalence of both formulas.

Quintus Prolog Release 2.4.2 (Sun-4, SunOS 4.0)
Copyright (C) 1988, Quintus Computer Systems, Inc. All rights reserved.
1310 Villa Street, Mountain View, California (415) 965-7700

I ?- compile(['ops')).
[compiling /tmp-mnt/auto/quintus/mdukes/wrdc2/ops...)
Cops compiled 0.400 sec 1,656 bytes]

yes
I ?- compile(['verify')).
[compiling /tmpmnt/auto/quintus/mdukes/wrdc2/verify...]
[verify compiled 1.417 sec 3,428 bytes]

yes
I ?- ['equation'].
[consulting /tmp.mnt/auto/quintus/mdukes/wrdc2/equation...
[equation consulted 0.034 sec 280 bytes)

yes
I ?- go.

yes
I ?- halt.

If we change the Boolean formulas of the equation file from

eqtn((-(x y)),(- x 0 - y)).

to

eqtn((-(x - y)),(- x - - y)).

the following result will be obtained.

CProlog version 1.2a

I ?- ['ops'].
ops consulted 1352 bytes 0.150000 sec.

10

yes
I ?- L'verify'].
verify consulted 4980 bytes 0.466666 sec.

yes

I ?- ['equation'].
equation consulted 84 bytes 0 sec.

yes

I ?- go.

no

I ?- halt.

[Prolog execution halted)

The next example involves the consideration of parity generation for an eight-input odd
parity generation circuit. For this example, a, b, c, d, e, f,g, and h will be used to designate the
input variables. Consider the following specification for odd parity generation:

j = (aS(b$(c$(d$(e$(fS(gh))))))).

Even though the expression for j is fairly straightforward the problem is in the implementation. If
the expression for j were implemented directly, a delay of seven exclusive or gates would be incurred.
Upon rearranging the variables using the associative and commutative properties of exclusive nr.
an equivalent Boolean formula is obtained:

k = (((hg)$(f e))$((d$c)$(b$a))).

A new delay of three exclusive or gates would result for the implementation. Figure 1 shows both
the specification and implementation. Using Boole's Expansion Theorem to verify j = k we obtain

Quintus Prolog Release 2.4.2 (Sun-4, SunOS 4.0)
Copyright (C) 1988, Quintus Computer Systems, Inc. All rights reserved.
1310 Villa Street, Mountain View, California (415) 965-7700

I ?- compile(['ops']).
[compiling /tmp-nt/auto/quintus/mdukes/wrdc2/ops...]

Cops compiled 0.350 sec 1,656 bytes]

yes
I ?- compileC['verify']).
[compiling /tmp-mnt/auto/quintus/mdukes/wrdc2/verify...]
[verify compiled 1.417 sec 3,428 bytes]

yes

I ?- ['equation'].
[consulting /tmp-mnt/auto/quintus/mdukes/wrdc2/equation...]

[equation consulted 0.033 sec 372 bytes]

yes

11

hj

h k

Figure 1. Specification and Implementation of Parity Generator.

I -go.

yes

Stopped
[33) ares pa -ug

USER PID %CPU %MEM SZ RSS TT STAT START TIME COMMAND
mdukes 9421 0.0 2.7 248 840 p1 T 11:39 0:02 Prolog /usr2/eng/adukes/
[34) ares fg
prolog
halt

From the statistics gathered by the system for the Quintus Prolog session ()n a SUN 4, only
two seconds of CPU time were spent in the evaluation. The HOL system was used to expand the
formulas j and k using the identity

a$b = (-a~b)@(a--b).

The following new formulas for j and k, called j..alt and k-alt respectively, were obtained.

j-.alt = (-((h -g * h -- g) -(-f -e 6 f ^ e) 0

12

(-h g C h -g) -(- e f e))
(C(-d c C d -c) ('b a b -a) C
(d c C d -c) -(-b a C b -a)) C

(-(-h g 0 h -g) (-f e C f -e) C
(-h - g C h - g) - (f - e C f -e)) "

(-(-d c C d - c) (-b - a C b -a) C
(Cd c 0 d -c) (-b a 0 b -a)))

and

k-alt = C a -

(Cb
(-C
(Cd
(-e (f (-g h g -"h) f -(-g h g -))
e -(-f (-g h C g -h) f -(-g h e g -h))) 0

d -

(-e (-f (g h 0 g -h) C f - (-g h C g -h)) 0
e -(f (-g h C g -h) f -(-g h C g -h)))) 0

C

-(-d
(-e (-f (-g h 0 g -h) f -"(-g h g -h)) 0
e - (f (-g h 0 g -h) f -(-g h C g - h))) C

d -

(-e (-f (g h C g -h) C f (-g h C g -h)) C

e -('- ('- h g -h) f- -(-g h e g -h))))) a
b

(-d-

("e (-f (g h C g - h) C f - (-g h g - h)) C
e C -- Cg h C g -h) 0 f - (g h C g -h))) C

d"

-(-e Cf (g h C g -h) 0 f -(g h C g -h)) C
o CI (Cg h e g -h) C f -(-g h 0 g -h)))) C

-(d
(-f ("g h 0g h)CI -g h g h))C

o -(-f (-g h C g -h) C f g h C - h))) C

C(e - -(g h C g -h) C f C(g- h g - h)) C
e C(-f -g h C g -h) C fI (- h C g - h)))))) C

a

Cc

C-d
Ce "(f (-g h 0 g -h) 0 f -(-g h 0 g -h)) C

e -(" (-g h C g -h) C f -(-g h C g - h))) C

d -

"(e (- (g h C g -h) C f -("g h C g -h)) C
*e -(-f (-g h 0 g " h) f -"('g h g -h)))))

C

"(-d

(-¢13

(-e (-f (-g h a g -h) e f -(-g h 0 g -h)) O
C'f (g h 0 g 'h) O f -(-g h 0 g -h))) 0

d
-(-a (-f (-g h 0 g -h) 0 - -g - h 0 g -1"h)) 0

e ('f - (Cg - h e g - h) 0 f " (g h 0 g " h))))
C (f (g h 0g -h) 0 1 -(g h 0 g -h))))) 0

b -

"(C

(-d
('e (f (-g h 0 g -h) 0 f -(-g h e g - h)) 0
S"('-f (-g -h 0 g -h) f -(-g h 0 g -h))) 0

d -
-(-e a ' (-g -h a g -"h) e f -(-g -h e g"h)e

e " (- " (-g " h 0 g - h) a I - (-g -h e0 g 10h))

(-" (-:f (-g h C g -h) f -- g h g -h))

e

a (gh (g h h) Of -(g h 0g h)))C
-(-f (-g - h 0 g" -"h) e f - -(-g - heQg - -h))))4)

Attempting to use HOL to rearrange j or k through the laws of commutativity, associativity,
distributivity, or De Morgan would have been tedious. Using an HOL tactic called BOOLCASESTAC
[2] for this small example would have required a relatively large amount of CPU time and memory;
however, the Prolog program accomplishes the task more efficiently as shown in the expansion that
follows.

Quintus Prolog Release 2.4.2 (Sun-4, SunOS 4.0)
Copyright (C) 1988, Quintus Computer Systems, Inc. All rights reserved.
1310 Villa Street, Mountain View, California (415) 965-7700

I ?- compile(['ops'J).

[compiling /tmp-mnt/auto/quintus/mdukes/wrdc2/ops...)
Cops compiled 0.400 sec 1,656 bytes]

yes
I ?- compile(['verify']).
[compiling /tmpmnt/auto/quintus/mdukes/wrdc2/verify...]
[verify compiled 1.450 sec 3,428 bytes]

yes
I ?- ['equation'].
[consulting /tmp.mnt/auto/quintus/mdukes/wrdc2/equation...]
[equation consulted 0.567 sec 4,996 bytes]

yes

I ?- go.

yes

I ?-

14

Stopped
[32]ares ps -ug
USER PID %,CPU YMEM SZ RSS TT STAT START TIME COMMAND
mdukes 9457 8.6 2.7 248 864 pl T 12:06 0:04 Prolog /usr2/eng/mdukes/
[33)ares fg
prolog

halt.

Only four seconds of CPU time were expended to verify j-alt = k-alt. If kalt is altered such

that the sixth line up in the formula of the equation file is changed from

e^-(-f (-g-h@g"-h)@f--(-g-h@g--h)))@

to
e" -('f ̂ (~-h@g ^ "h)@f ^ "(-g ̂ h@g)))@

the following result is obtained, indicating a failure of equivalence.

Quintus Prolog Release 2.4.2 (Sun-4, SunOS 4.0)
Copyright (C) 1988, Quintus Computer Systems, Inc. All rights reserved.
1310 Villa Street, Mountain View, California (415) 965-7700

I ?- compile(['ops']).
[compiling /tmp-mnt/auto/quintus/mdukes/wrdc2/ops...]

Cops compiled 0.383 sec 1,656 bytes]

yes
I ?- compile(E'verify')).
[compiling /tmp-mnt/auto/quintus/mdukes/wrdc2/verify...]
[verify compiled 1.433 sec 3,428 bytes]

yes

I ?- ['equation'].
[consulting /tmp-mnt/auto/quintus/mdukes/wrdc2/equation...]

[equation consulted 0.533 sec 4,984 bytes]

yes

I ?- go.

no
I ?-

Stopped

[32]ares ps -ug
USER PID %CPU %,MEM SZ RSS TT STAT START TIME COMMAND
mdukes 9476 11.9 2.7 248 864 pl T 12:14 0:04 Prolog /usr2/eng/mdukes/
[33) ares fg
prolog
halt.

Again only four seconds of CPU time were expended. Because of the extensive use of cuts,
failure usually occurs much sooner than success for larger formulas. Some larger formulas of greater
than eight variables have been run through the expansion routine. One expansion involving two

15

formulas of sixteen variables and greater than 470 pages was run through the expansion routine in
less than 15 minutes.

16

VI. Conclusions

The Prolog implementation of Boole's Expansion Theorem using the f = g form appears to
be very simple and efficient. Part of the success of the routine is in the simple pattern matching
betwecn an expansion of f and g. This can be most helpful when attempting to verify expressions
similar to a straight ripple-carry adder and carry-select adder where the basic adder circuit remains
the same. The pattern matching feature helps to reduce the depth-first search space of the expansion
process. If two Boolean formulas do not describe the same Boolean function, failure will generally
come quickly since a leaf node of the depth-first solution tree will generally contain a conflict before
the remaining portion of the formulas is expanded.

Further work is being explored to go beyond the current Greedy algorithm method of the
implementation. A type of generalized best-first search option is being considered. In this case,
examination of the next variable for expansion is determined using a criterion for selecting the
variable of greatest occurrence. Identification of the variable would be further based on reducing
the size of the formulas early in the expansion process or the likelihood of causing failure early in
the expansion process.

17

VI!. References

I. Cousineau, U., G. Ilict arid L. lPaijson. The ML Handbook. INRIA; 1986.

2. Gordon, Michael. The JIOL Manual. 1987.

3. Shannon, C.E., "The synthesis of two-terminal switching circuits," Bell System Technical
Journal, vol. 28, no. 1, pp. 59-98, 1949.

4. Boole, George. An Investigation of the Laws of Thought. New York: Dover Publications; pp.
72-78, 1854.

5. Brown, Frank Markham. Boolean Reasoning. Boston: Kluwer Academic Press; pp. 40-42,
scheduled 1990.

6. Rudeanu, Sergiu. Boolean Functions and Equations. London: North-Holland Publishing; p.
9, 1974.

7. Clocksin, W. F. and C. S. Mellish. Programming in Prolog. New York: Springer-Verlag; 1987.

18
OU.S.Government Printing Office: 1990-748-0 5 6 / 2 4 3 2 2

